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J. Phys. A: Math. Gen.. Vol. 9, No. 11, 1976. Printed in Great Britain. @ 1976 

Evaluation of lattice sums using Poisson's summation 
formula I11 

A N Chabat and R K PathriaS 
t Universidade Federal da Paraiba, Departamento de Fisica, CCEN, Jog0 Pessoa, Paraiba, 
B r a d  
t. Department of Physics, University of Waterloo, Waterloo, Ontario, Canada 

Received 29 June 1976 

Abstract. Using Poisson's summation formula of dimensionality less than or equal to three, 
a number of slowly convergent three-dimensional lattice sums, which appear in the theory 
of ionic crystals, have been reduced to rapidly convergent two-dimensional sums. As a 
result we not only reproduce some of the formulae reported recently by Hautot and by 
Zucker but also obtain several new ones which exhibit a remarkably fast convergence. 

1. Introduction 

Recently we developed a method for the analytic evaluation of a class of lattice sums in 
arbitrary dimensions (Chaba and Pathria 1975, 1976; to be referred to as I and 11, 
Iespectively). The central theme of this method was to convert a given slowly 
convergent sum into a rapidly convergent one by the application of Poisson's summa- 
tion formula. Accordingly, the evaluation of a variety of sums appearing in the 
theoretical study of different physical systems was considerably facilitated; for refer- 
ence to possible applications, see I and 11. 

In the present paper we report a further development of our method which leads to 
alternative forms for certain basic sums that appear in the theory of cubic lattices; some 
of these forms turn out to be reproductions of the ones reported recently by Hautot 
(1974,1975) and by Zucker (1975,1976) while others are new and, in general, exhibit a 
remarkably fast convergence. This is made possible by applying Poisson's summation 
formula, of dimensionality less than or equal to d, to a given d-dimensional sum in 
conjunction with the formulae 

and 

The notation employed in this paper is the same as in I and 11, except that the 
summation variables are now designated as follows: m and n denote all integers, k and l 
denote only odd integers while p and q denote only euen integers. 
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2. Evaluation of sums 

We start with the two-dimensional sum 

where 2' excludes the term with ml  = m2 = 0. For reasons of symmetry, it will be 
sufficient to consider in the range (0, i). Now, the summation over ml  can be carried 
out using formula (1) for m2 # 0 and formula (2) for m2 = 0, with the result 

cos(2.rre2m) cosh[(l -2e1).rrm] 
A(€1,e2)=.rrz(~-2e1+2€~)+2.rr m sinh(.rrm) 

m = l  
(4) 

The original two-dimensional sum is thereby reduced to a one-dimensional sum. The 
following special cases may be noted (see equation (28) of 11) 

m 

A($,+)= -.rrln2; 2 ( -  1)"-' cosech(.rrm) = -4 In 2 +AT, (5a) 

A(O,$)= -$.rrIn2; (-l)"m-'coth(rm)= -$ln2-;.rr, (5b) 

m = l  

OD 

m = l  

1 A(;, 0) = - 3 ~  1 In 2; 

From these results one readily obtains 

2 m-l cosech(.rrm) = -$In 2+n.rr. 
m = l  

m .- 
I (- 1)"-' tanh(i.rrm) = $ In 2 - 4 ~ ~  

(- 1)"-' coth(z.rrm) = -5 In 2 - n r ,  

m = l  

OD 
1 3 1 

m = l  

m m 

m = l  m = l  
(-1)"2m-'(e*""-1)-'= - m - l  cosech(2rm) = $ In 2 -i.rr, (6c ) 

m 
3 

OD 

k-' cosech(.rrk) = In 2, 1 p- l  cosech(.rrp) = - g In 2 +AT; 
k = l  p = 2  

some of these results have already been reported by Hautot (1975) and by Zucker 
(1976). Finally, the asymptotic behaviour of A (e1, e2) ,  as e = (cl +eZ) + 0, is given by 

limA(E1, ~~)=-2 . r r In (m) -n -q ,  II(27) 

2 2 1/2 

€ -0 

where 
77 = ln{[I'(i)]4/(4.rr3)}= 0.33160608. 

It then follows from (4) that 

lim m-] coth(.rrm) cos(2mm) 
m 

e+O m = l  
m 

=lim m-l cosech(.rrm) cosh[(1-2c).rrm] 

= - In(m)  - gr - 377. 

a - 0  m = l  

1 1  

(7) 
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We are now in a position to consider the three-dimensional sum 

cos(2mlml)  cos(2m2m2) cos(2m3m3) exp[- a(m: + mz + m:)'/2] 
= f j  . (9) 

m 1 . 2 . 3 = - ~  ( m ;  + m i  + 
For the part with m 3 = 0  we use equation (41) of 11; for the remainder we apply 
the (two-dimensional) Poisson formula to summations over m l  and m2 and then carry 
out a straightforward summation over m3 # 0. We get 

cos(2mlml)  cos(2m2m2) 
V ( Z ; a ) = a +  C' 

m I . z = - m  (m? + 

where 

For a = 0, we get (in the notation of 11) 

B(Z) = TU(;; 0) 

= r  f l  c o s ( 2 7 r ~ ~ m ~ )  cos(2m2m2) 
n11.2= -m (m: + m:)lf2 

( 1  1 )  
Now 

and 

1 
lim B(i)  = -I+ C3, 
E + O  E 

where 
m 00 

and C3 is a constant defined by 

II(36) 

II(56) 

II(50) 
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in Zucker’s notation, C3 = a(2) = - 8.91363292. Taking the limit E + 0 in (1 1) and 
using the foregoing results, we obtain for C3: 

C, = f 7 r 2  + 47rl(;)p(;) + 27r z t  (m: + m:)-’/’{exp[27r(m: + m31/21 - I}-’. (12a) 

Using equation (A.l) of the appendix, we obtain a very rapidly converging expression, 
namely: 

C3 = 47r In 2 - ;7r2 + 47rl(i)p (;) - 27q 

ml.z=-m 

m 

+ 87r (m: + m:)-1’2{exp[2.rr(m: + m:)1’2] - 1}-l. (12b) 

For obtaining an accuracy of 1 in lo9, it is sufficient to take only four terms of the final 
series in equation (12b). 

We now consider other special values of B ( E ] ,  E ~ ,  E ~ ) .  First of all, using equation 
(38) of 11, we obtain 

B(i,;,;)=4(J2-1)7rl(i)p(;)-16.rr 1 (k2+IZ)-1’2{e~p[7r(k2+12)1’2]+1}-1. (13) 

Next, using equations (38) of I1 and (A.4), we get 

m i . z = l  

00 

k, l= 1 

B(O,i, i) = B(i, 0,;) 

= 2J2(J2 - 1)*l(i)p(i) - Tq 
m m  

- 1677 1 1 ( k 2 + p 2 ) - 1 ’ 2 { e ~ ~ [ . r r ( k 2 + p 2 ) 1 ’ 2 ] +  l}-’. 
k = l  p = 2  

However, if we take el = E~ = 4 and e3 = 0, we get instead 

B($,;, 0)=4(J2-  l).nl(;)p(b)+167r 1 (k2+12)-1’2{exp“r(k2+12)1’2]-1}-1. (14b) 

Equating (14a) and (14b), we obtain the following sum in a closed form: 

m 

k , l =  1 

4-3J2 1 
=- l ( i )p ($)  --q 0.00884846. 

8 16 

Next, usingequations (38) of I1 and (A.3), we get 

B(0, ;, 0)  = B(& 0,O) 

= 7r In 2+2J2(J2-  1)7rl(+)p(k)-7q 
m m  

+ 16- 1 (k2+p2)-1’2{e~p[7r(k2+p2)1’2]- l}-’. (16a) 
k = l  p = 2  

However, if we take e3 =; and let E ]  = e 2 + 0 ,  we get, using (36) of I1 and (A.2), 

B(O,O,i)= 107r ln2-7r2+47rl($)p(i)-2q 
m 

- 16.rr (p2+qz)-1’2{exp[.rr(p2+q2)1’2]+ l}-’. 
p.4 = 2 
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Equating (16a) and (16b), we obtain another sum in a closed form: 

C C ~PZ+m2)-1’2{e~p[7r(p2+m2)1/2~+(-  1 1 ~ ) ~ ’  
c o w  

p = 2  m = l  

9 7r J 2  1 
=-ln 2--+-{(;)/3(4)--77 =0.00045138. 

16 16 8 16 

Clearly, formulae (15) and (17) are more basic than the one reported by Hautot (1975), 
namely: 

m,n = 1 

9 T J 2 - 1  
- ln2--+- 

16 16 2 m P  (h -_ 

which follows quite simply by subtracting (15) from (17). On the other hand, adding 
(15) to (17), we obtain another result of this type: 

2 (m2+n2)-1’2{exp[7r(m2+n2)1/2~+(- 1 1 ~ ) ~ ’  
m 

m,n = 1 

7~ 2 - J 2  1 
ln2---- &)P (3) - 8 77. 9 

16 16 4 
=- 

We now consider the sum 

exp{-a[(m, +el)2+(m2+e2)2+(m3+e3)2]1/2) 
[ ( m l  + cl)’ + (m2  + e J 2  + (m3 + E ~ ) ~ ] ~ / ~  

V ( z ; a ) =  f 
m 1.2.3 = -a 

Applying Poisson’s summation formula in three dimensions, this sum takes the form 

cos( 2 7re m 1) cos( 2 m 2 m  *) cos(2 7re3 m3) 
a 2  +47r2(m: + m; + m:) 

~ ( ~ ; a ) = 4 7 r  f 
mi,z.n= -a 

Summing over m3, with the help of formula ( l ) ,  we are left with a two-dimensional sum, 
namely: 

where 
2 1/2 c ( m l ,  mz)  = [$a2 + 7r2(m:+ m2) ]  

For a + 0, we have (in the notation of 11) 

cos( 2 7re m cos(2 7re2m2) cos( 27re3m 3) 
A(Z)= E’ 

m1.2.3=-m m : + m : + m :  

a+O 
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= T2(& 2E3 + 2 4  
O0 [cos(2mlm) +cos(2.rr~~m)] cosh[(l - 2e3)7rm] 

m sinh(.rrm) 
+ 2 T  

m = l  

cos(2mlml)  cos(2m2m2) cosh[(l - 2e3)7r(m: + m :)"2] 

(m; + m;)1'2 sinh[.rr(m: + m;)1'2] +47r 
m I , z = l  

(25 )  

The following cases of c2, E ~ )  are of special interest. 
First of all, using (5a) ,  we obtain 

m 
1 1 1  A ( z , ~ ,  5) = - 27r In 2 + $r2 + 47r 1 (- l)mlcmz 

m1,2= 1 

Next, using ( 5 a )  and (5c), we get 

A (0, 4, i) = A (4, 0 ,  4) 
3 = - in  In 2+i.rr2 

m 

+ 4 ~  ( -  l)"(m:+m:)-'/* c~sech[ . r r (m:+m~)~/~] .  (27) 
m1,2=1 

However, if we take E]  = c2 = 4 and e3 = 0 and use (%), we get instead 
a- 

l l  A ( ~ , p ,  0 )  = - 7r In 2 - f . r r2  + 4~ (-l)m1+m2 
m ~ . z = l  

X ( m : + m : ) - 1 / 2  coth[~(m:+m:)'/~]. 

Combining (28) with the formula 

we obtain a very rapidly converging form: 

A(&+,  0 ) = 3 ~  In 2-$7r2+4(d2-1).rr[(i)p(i) 
W 

2 -1/2 +8.rr (- 1)m1cmz(m;+m2)  (exp[2~(m:+m:)'/~]- l}-'. (30) 
m1,2=1 

Next. we obtain 
m 

A(O,O,i)= -T In 2+i.rr2+47r (m:+m:)-'/2cosech[.rr(m~+m~)"2]. (31) 
m1.2=1 

1 1 However, if we take e3 = 0 and = p ,  e2 = 0), we encounter 
divergencies which, in the end, get cancelled. This requires a cautious use of the 
formulae (56), (8) and II(38), along with the standard result, 

= 0, e2 = p (or e3 = 0 and 
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We finally obtain 

A (o,$, 0) = A (it 0, 0) 

= $7r In 2 -47 '  + 2J2( J2  - 1)7rl($)/?(i) - 7rv 
W 

+87r 1 (-l)m1(m:+m:)-1'2{exp[27r(m:+m:)1/2]- l}-', (33) 
m1.2= 1 

which again is very rapidly convergent. In a private communication, Zucker has 
informed us of another form for A(O,O,$) (equal to b(2) in his notation) which 
converges even faster than (33). 

3. Applications and conclusions 

The results reported here find immediate application in the evaluation of Madelung 
constants and other related sums for different lattice structures. For instance, the 
Madelung constant for NaCl is given by 

a(NaC1) = - T - ~ B ( ~ ,  i, i). (34) 
Substituting (13) into (34), we recover the result first established by Hautot (1974) with 
the aid of the Schlomlich series. However, a(NaC1) is also given by, see II(596), 

a (NaCl) = - 3 K ' A  (0, i, i). (35) 
Substituting (27) into ( 3 9 ,  we recover instead the more recent formula derived by 
Hautot (1975) and by Zucker (1976). If, on the other hand, we substitute (30) into (35), 
we obtain a new expression for a (NaCl) which, to our knowledge, is the most rapidly 
converging expression reported to date: 

a(NaCl)= -9 In 2+~-12(J2-1)5($)@($)  
a, 

-24 ( - l ) m 1 " 2 ( m ~ + m ~ ) - ' ~ 2 { e x p [ 2 7 r ( m ~ + m ~ ) ' ~ 2 ] - 1 } - 1 .  (36) 

As in the case of equation (126) for C,, only four terms of the final series (instead of 
Hautot's nine) suffice for obtaining an accuracy of 1 in 10'. It may be mentioned here 
that equation (36) has also been derived independently by Zucker (private communica- 
tion). 

Next, the Madelung constant for CsCl is given by, see II(59), II(60) and II(67), 

m i , z = l  

(37) 

= -3Y'[A(O, O,i)+A(O,$,$)] (38) 

= -&-'[B(O, 0, ;)+A(O, i, i)]. (39) 

1 1 1  a(CSCl)=.rr-'[A(z,2,z)-C3] 

Substituting (27) and (31) into (38), we recover the recent formula of Hautot (1975). If, 
on the other hand, we substitute (166) and (30) into (39), we obtain 

a(CsCl)= - y l n  2+2~-6425($)@($)+377 
W W  

+24 (k2+p2)-1'2 ~osech[27r(k'+p~)''~] 

- 12 1 [ 1 + ( - l)"+"](mZ + n 2)-1"{exp[4~(m2 + n2)1'2] - l}-'. 

k = l  p = 2  

W 

(40) 
m,n = 1 
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The remarkable feature of this result is that the closed part alone provides an accuracy 
of 1 in lo5. The inclusion of only one term of the first series on the right-hand side 
improves the accuracy to 1 in 10’; further inclusion of one term of the second series 
makes it 1 in lo9. 

At this stage we wish to remark that the considerable improvement in the con- 
vergence of the series expansions reported here implies the following useful reductions: 

2 ( k 2  + 12)-’/*{exp[.rr(k2 + 12)1/2] + l}-’ 
k , l = l  

2 ( k 2  + 1 2 ) - ’ / ’  cosech[rr(k2 +12)1/2] 
k . l = l  

9 
= -8  In 2+$72- (42-  1)l(~)p($-(S,-6S2+3S3), 

m a o  c ( k 2 + p 2 ) - 1 / 2  c~sech[.rr(k’+p~)’/~] 
k = l  p = 2  

and 

f ( p 2 + q 2 ) - 1 / 2  cosech[.rr(p2+q2)1/2]=S1+2S2-S3, 
p.4 = 2 

where 

and 

(44) 

Clearly, the series (45)-(47) converge much more rapidly than the ones appearing on 
the left-hand sides of (41)-(43). 

In the end we observe that the formulae reported here enable us to render the 
important lattice sum 

into a very useful form which contains only two-dimensional sums that are far more 
tractable than the original sum itself. For this we employ equation (10) for U(;; a)  and 
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let E + 0. Using II(36), we obtain 

U(0; a ) = ( 2 ~ / a ) c o t h ( ~ a ) + 4 5 ( ~ ) P ( ~ ) + a  - E' {(m:+m2) 
m 

2 -1/2 

m i . z = - w  

m 

- 2T[a2 + 47T2(m: + m;)1-'/~)+47~ E' [a' +4.rr2(m: + m2)] 2 -1/2 

~ { e x p [ a * + 4 l T ~ ( m : + m ~ ) ] ~ / ~ -  I}-', (49) 

mi,z=-m 

valid for all a > 0. While the second sum on the right-hand side converges very rapidly, 
the first sum can be expressed as a power series in a by using the Hardy sums, 

which would appear among the coefficients of the expansion. For a << 1, we obtain, 
using (12a), 

41T c, 
U(0;  a ) = - - ? . + - + + - 0 ( a 2 ) ,  

U T  

in agreement with II(63a). 
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Appendix 

We consider the sum 

which may be written as 

Using Jacobi's formula in traditional notation (see Whittaker and Watson 1927), 
namely: 

m n (1 -q2fl)6 = ~ T - ~ ~ - * ' ~ K K ' K ~ ,  
n = l  

with q = ePT, we obtain 

K = K ' =  I/& and K = [r(:)i2/(4d~), 
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whence 

Similarly 

1 1  
m 

5 s+= m-'(e2*'" +I)-'= -Zln2+Z.rr++q. 
m = l  

We note that S+ + S e  = -$In 2+%7r, in agreement with (6c ) .  
Using the same method, we obtain other results such as 

Adding (A.3) and (A.4), we get 
m 

k-' cosech(.rrk) = 4 In 2, 
k = l  

in agreement with (6d ) .  Other combinations yield the following results: 

f m(e" - 11-1 = 2 

f m(e*m+1)-1= -2ln2+:.rr+:q. 

1 1  In 2-5;i.rr-zq 
m = l  

m = l  
(A.7) 

Clearly, several other sums can be evaluated, or constructed, with the help of the 
foregoing results. 

In passing we quote the remarkable sum (Whittaker and Watson 1927) 

which does not really fall into the class of sums studied in this paper; it is quoted just for 
the readers' delight. 
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